Fluorescent molecular rotors based on the BODIPY motif: effect of remote substituents.

نویسندگان

  • Effat Bahaidarah
  • Anthony Harriman
  • Patrycja Stachelek
  • Sandra Rihn
  • Elodie Heyer
  • Raymond Ziessel
چکیده

The ability of an unconstrained boron dipyrromethene dye to report on changes in local viscosity is improved by appending a single aryl ring at the lower rim of the dipyrrin core. Recovering the symmetry by attaching an identical aryl ring on the opposite side of the lower rim greatly diminishes the sensory activity, as does blocking rotation of the meso-aryl group. On the basis of viscosity- and temperature-dependence studies, together with quantum chemical calculations, it is proposed that a single aryl ring at the 3-position extends the molecular surface area that undergoes structural distortion during internal rotation. The substitution pattern at the lower rim also affects the harmonic frequencies at the bottom of the potential well and at the top of the barrier. These effects can be correlated with the separation of the H1,H7 hydrogen atoms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning BODIPY molecular rotors into the red: sensitivity to viscosity vs. temperature

Viscosity variations in the microscopic world are of paramount importance for diffusion and reactions. In the last decade a new class of fluorescent probes for measuring viscosity has emerged termed ‘molecular rotors’, which allows quantitative mapping of viscosity in microscopically heterogeneous environments. Here we attempt to tune the absorption and emission of one such ‘molecular rotor’ ba...

متن کامل

Solvent-polarity (In)dependent Deactivation of BODIPY Molecular Rotors∗

Molecular rotors based on meso-substituted boron-dipyrromethane (BODIPY) are widely recognized fluorescent viscosity sensors. The viscosity dependence of their fluorescence arises from an efficient excited-state deactivation process that can only occur when molecularscale motion is not hindered. Here, we use visible and IR pump-probe spectroscopies combined with TD-DFT calculations to show that...

متن کامل

Solvent-polarity (In)dependent Deactivation of BODIPY Molecular Rotors∗

Molecular rotors based on meso-substituted boron-dipyrromethane (BODIPY) are widely recognized fluorescent viscosity sensors. The viscosity dependence of their fluorescence arises from an efficient excited-state deactivation process that can only occur when molecularscale motion is not hindered. Here, we use visible and IR pump-probe spectroscopies combined with TD-DFT calculations to show that...

متن کامل

Solvent-polarity (In)dependent Deactivation of BODIPY Molecular Rotors∗

Molecular rotors based on meso-substituted boron-dipyrromethane (BODIPY) are widely recognized fluorescent viscosity sensors. The viscosity dependence of their fluorescence arises from an efficient excited-state deactivation process that can only occur when molecularscale motion is not hindered. Here, we use visible and IR pump-probe spectroscopies combined with TD-DFT calculations to show that...

متن کامل

Solvent-polarity (In)dependent Deactivation of BODIPY Molecular Rotors∗

Molecular rotors based on meso-substituted boron-dipyrromethane (BODIPY) are widely recognized fluorescent viscosity sensors. The viscosity dependence of their fluorescence arises from an efficient excited-state deactivation process that can only occur when molecularscale motion is not hindered. Here, we use visible and IR pump-probe spectroscopies combined with TD-DFT calculations to show that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology

دوره 13 10  شماره 

صفحات  -

تاریخ انتشار 2014